((x^2-150x+15000)/x)=100

Simple and best practice solution for ((x^2-150x+15000)/x)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((x^2-150x+15000)/x)=100 equation:



((x^2-150x+15000)/x)=100
We move all terms to the left:
((x^2-150x+15000)/x)-(100)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
((x^2-150x+15000)-100*x)=0
We calculate terms in parentheses: +((x^2-150x+15000)-100*x), so:
(x^2-150x+15000)-100*x
We add all the numbers together, and all the variables
-100x+(x^2-150x+15000)
We get rid of parentheses
x^2-100x-150x+15000
We add all the numbers together, and all the variables
x^2-250x+15000
Back to the equation:
+(x^2-250x+15000)
We get rid of parentheses
x^2-250x+15000=0
a = 1; b = -250; c = +15000;
Δ = b2-4ac
Δ = -2502-4·1·15000
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-250)-50}{2*1}=\frac{200}{2} =100 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-250)+50}{2*1}=\frac{300}{2} =150 $

See similar equations:

| 15+4(x)=39 | | -24x+12+24x=153 | | -1=-9+4/5x | | -2x-14=−2 | | (x^2-150x+15000)/x=100 | | 32+4x=4(-x+6)-32 | | 5x*3=-2 | | 3x+1=x+12* | | 6x+8=√562 | | -3a+6=22 | | x^2-150x+15000=100 | | 12s-11s-6s=17 | | 5x+25=12x+31 | | 3x-41/2=-191 | | 24x+12x=153 | | H(4)=8x-3 | | 12x+25=15x*31 | | 24/y=-4 | | -24x+12=153 | | 207=5x+4(1+6x) | | F(17)=2x+5 | | y/24=-4 | | 81=3b3 | | 81=b3 | | 24x-12=153 | | 4(5x-1)=-4(1+2x) | | x/5+2=18 | | .59n=12.8-3.2n | | 47/5x=2-3/3x | | b/5-1/10=1/2 | | 7(x-7)=8(x-5) | | 6-5(3x-5)=44 |

Equations solver categories